193 resultados para Heart Transplantation

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heart disease is attributed as the highest cause of death in the world. Although this could be alleviated by heart transplantation, there is a chronic shortage of donor hearts and so mechanical solutions are being considered. Currently, many Ventricular Assist Devices (VADs) are being developed worldwide in an effort to increase life expectancy and quality of life for end stage heart failure patients. Current pre-clinical testing methods for VADs involve laboratory testing using Mock Circulation Loops (MCLs), and in vivo testing in animal models. The research and development of highly accurate MCLs is vital to the continuous improvement of VAD performance. The first objective of this study was to develop and validate a mathematical model of a MCL. This model could then be used in the design and construction of a variable compliance chamber to improve the performance of an existing MCL as well as form the basis for a new miniaturised MCL. An extensive review of literature was carried out on MCLs and mathematical modelling of their function. A mathematical model of a MCL was then created in the MATLAB/SIMULINK environment. This model included variable features such as resistance, fluid inertia and volumes (resulting from the pipe lengths and diameters); compliance of Windkessel chambers, atria and ventricles; density of both fluid and compressed air applied to the system; gravitational effects on vertical columns of fluid; and accurately modelled actuators controlling the ventricle contraction. This model was then validated using the physical properties and pressure and flow traces produced from a previously developed MCL. A variable compliance chamber was designed to reproduce parameters determined by the mathematical model. The function of the variability was achieved by controlling the transmural pressure across a diaphragm to alter the compliance of the system. An initial prototype was tested in a previously developed MCL, and a variable level of arterial compliance was successfully produced; however, the complete range of compliance values required for accurate physiological representation was not able to be produced with this initial design. The mathematical model was then used to design a smaller physical mock circulation loop, with the tubing sizes adjusted to produce accurate pressure and flow traces whilst having an appropriate frequency response characteristic. The development of the mathematical model greatly assisted the general design of an in vitro cardiovascular device test rig, while the variable compliance chamber allowed simple and real-time manipulation of MCL compliance to allow accurate transition between a variety of physiological conditions. The newly developed MCL produced an accurate design of a mechanical representation of the human circulatory system for in vitro cardiovascular device testing and education purposes. The continued improvement of VAD test rigs is essential if VAD design is to improve, and hence improve quality of life and life expectancy for heart failure patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart failure is a complex disorder, characterized by activation of the sympathetic nervous system, leading to dysregulated Ca2+ homeostasis in cardiac myocytes and tissue remodeling. In a variety of diseases, cardiac malfunction is associated with aberrant fluxes of Ca2+ across both the surface membrane and the internal Ca2+ store, the sarcoplasmic reticulum (SR). One prominent hypothesis residues is that in heart failure, the activity of the ryanodine receptor (RyR2) Ca2+ release channel in the SR is increased due to excess phosphorylation and that this contributes to excess SR Ca2+ leak in diastole, reduced SR Ca2+ load and decreased contractility (Huke & Bers, 2008). There is controversy over which serine residues in RyR2 are hyperphosphorylated in animal models of heart failure and whether this is via the CaMKII or the PKA-linked signaling pathway. S2808, S2814 and S2030 in RyR2 have been variously claimed to be hyperphosphorylated. Our aim was to examine the degree of phosphorylation of these residues in RyR2 from failing human hearts. The use of human tissue was approved by the Human Research Ethics Committee, The Prince Charles Hospital, EC28114. Left ventricular tissue samples were obtained from an explanted heart of a patient with endstage heart failure (Emery Dreifuss Muscular Dystrophy with cardiomyopathy) and non-failing tissue was from a patient with cystic fibrosis undergoing heart-lung transplantation with no history of heart disease. SR vesicles were prepared as described by Laver et al. (1995) and examined with SDS-Page and Western Blot. Transferred proteins were probed with antibodies to detect total protein phosphorylation, phosphorylation of RyR2 serine residues S2808, S2814, S2030 and for the key proteins calsequestrin, triadin, junctin and FKBP12.6. To avoid membrane stripping artifact, each membrane was exposed to one phosphorylation-specific antibody and signal densities quantified using Bio-Rad Quantity One software. We found no distinguishable difference between failing and healthy hearts in the protein expression levels of RyR2, triadin, junctin or calsequestrin. We found an expected upregulation of total RyR2 phosphorylation in the failing heart sample, compared to a matched amount of RyR2 (quantified using densiometry) in healthy heart. Probing with antibodies detecting only the phosphorylated form of the specific RyR2 residues showed that the increase in total RyR2 phosphorylation in the failing heart was due to hyperphosphorylation of S2808 and S2814. We found that S2030 phosphorylation levels were unchanged in human heart failure. Interestingly, we found that S2030 has a basal level of phosphorylation in the healthy human heart, different from the absence of basal phosphorylation recently reported in rodent heart (Huke & Bers, 2008). Finally, preliminary results indicate that less FKBP 12.6 is associated with RyR2 in the failing heart, possibly as a consequence of PKA activation. In conclusion, residues S2808 and S2814 are hyperphosphorylated in human heart failure, presumably due to upregulation of the CaMKII and/or PKA signaling pathway as a result of chronic activation of the sympathetic nervous system. Such changes in RyR2 phosphorylation are believed to contribute to the leaky RyR2 phenotype associated with heart failure, which increases the incidence of arrhythmia and contributes to the severely impaired contractile performance of the failing heart. Huke S & Bers DM. (2008). Ryanodine receptor phosphorylation at serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochemical and Biophysical Research Communications 376, 80-85. Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR & Dulhunty AF. (1995). Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. Journal of Membrane Biology 147, 7-22. Proceedings

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The International Society for Heart and Lung Transplantation recommended in 2006 that intervention studies to maximize psychological outcomes after transplantation should be conducted. Potentially, studies reporting on the effectiveness of non-pharmacological interventions in improving psychological outcomes for heart transplant recipients may have been published since the call for this research. Thus, further evidence may currently be available to inform policy and practice decision-making regarding the implementation of such interventions. Accordingly, an evaluation of the evidence is required. Objectives The objective of this review was to identify the effectiveness of non-pharmacological interventions on psychological outcomes for heart transplant recipients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focal segmental glomerulosclerosis (FSGS) is the consequence of a disease process that attacks the kidney's filtering system, causing serious scarring. More than half of FSGS patients develop chronic kidney failure within 10 years, ultimately requiring dialysis or renal transplantation. There are currently several genes known to cause the hereditary forms of FSGS (ACTN4, TRPC6, CD2AP, INF2, MYO1E and NPHS2). This study involves a large, unique, multigenerational Australian pedigree in which FSGS co-segregates with progressive heart block with apparent X-linked recessive inheritance. Through a classical combined approach of linkage and haplotype analysis, we identified a 21.19 cM interval implicated on the X chromosome. We then used a whole exome sequencing approach to identify two mutated genes, NXF5 and ALG13, which are located within this linkage interval. The two mutations NXF5-R113W and ALG13-T141L segregated perfectly with the disease phenotype in the pedigree and were not found in a large healthy control cohort. Analysis using bioinformatics tools predicted the R113W mutation in the NXF5 gene to be deleterious and cellular studies support a role in the stability and localization of the protein suggesting a causative role of this mutation in these co-morbid disorders. Further studies are now required to determine the functional consequence of these novel mutations to development of FSGS and heart block in this pedigree and to determine whether these mutations have implications for more common forms of these diseases in the general population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic liver injury and inflammation lead to hepatic fibrosis, cirrhosis, and liver failure. Embryonic and mesenchymal stem cells have been shown to reduce experimental liver fibrosis but have potential limitations, including the formation of dysplastic precursors, tumors, and profibrogenic cells. Other stem-like cells may reduce hepatic inflammation and fibrosis without tumor and profibrogenic cell formation. To test this hypothesis we transplanted human amnion epithelial cells (hAEC), isolated from term delivered placenta, into immunocompetent C57/BL6 mice at week 2 of a 4-week regimen of carbon tetrachloride (CCl4) exposure to induce liver fibrosis. Two weeks following hAEC infusion, intact cells expressing the human-specific markers inner mitochondrial membrane protein and human leukocyte antigen-G were found in mouse liver without evidence of host rejection of the transplanted cells. Human albumin, known to be produced by hAEC, was detected in sera of hAEC-treated mice. Human DNA was detected in mouse liver and also spleen, lungs, and heart of some animals. Following hAEC transplantation, CCl4-treated animals showed decreased serum ALT levels and reduced hepatocyte apoptosis, compared to controls. hAEC-treated mouse liver had lower TNF-α and IL-6 protein levels and higher IL-10 compared to animals given CCl4 alone. Compared to CCl4 controls, hAEC-treated mice showed fewer activated collagen-producing hepatic stellate cells and less fibrosis area and collagen content. Reduced hepatic TGF-β levels in conjunction with a twofold increase in the active form of the collagen-degrading enzyme matrix metalloproteinase-2 in hAEC-treated mice compared to CCl4 controls may account for the reduction in fibrosis. hAEC transplantation into immunocompetent mice leads to cell engraftment, reduced hepatocyte apoptosis, and decreased hepatic inflammation and fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigated how enzymes called phosphodiesterases control changes in contractility mediated by noradrenaline and adrenaline through activation of β1- and β2-adrenoceptors in live human heart tissue from patients with advanced heart failure undergoing transplantation. The study compared patients who had been administered β-blocker medicines metoprolol or carvedilol or no β-blocker treatment. This work helped to further elucidate the complex roles of target receptors and enzymes that are integral to the progression of heart failure, to compare the mechanisms of action of β-blockers currently used to manage heart failure and to identify new drug targets for heart failure treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shortage of donor hearts for patients with end stage heart failure has accelerated the development of ventricular assist devices (VAD) that act as a replacement heart. Mechanical devices involving pulsatile, axial and centrifugal devices have been proposed. Recent clinical developments indicate that centrifugal devices are not only beneficial for bridge to transplantation applications, but may also aid myocardial recovery. The results of a recent study have shown that patients who received a VAD have extended lives and improved quality of life compared to recipients of drug therapy. Unfortunately 25% of these patients develop right heart failure syndrome, sepsis and multi-organ failure. It was reported that 17% of patients initially receiving an LVAD later required a right ventricular assist device (RVAD). Hence, current research focus is in the development of a bi-ventricular assist device (BVAD). Current BVAD technology is either too bulky or necessitates having to implant two pumps working independently. The latter requires two different controllers for each pump leading to the potential complication of uneven flow dynamics and the requirements for a large amount of body space. This paper illustrates the combination of the LVAD and RVAD as one complete device to augment the function of both the left and right cardiac chambers with double impellers. The proposed device has two impellers rotating in counter directions, hence eliminating the necessity of the body muscles and tubing/heart connection to restrain the pump. The device will also have two separate chambers with independent rotating impeller for the left and right chambers. A problem with centrifugal impellers is the fluid stagnation underneath the impeller. This leads to thrombosis and blood clots.This paper presents the design, construction and location of washout hole to prevent thrombus for a Bi-VAD centrifugal pump. Results using CFD will be used to illustrate the superiority of our design concept in terms of preventing thrombus formation and hemolysis.